3. Group Technology / Cellular Manufacturing®

3.1 Introduction

As early as in the 1920ies it was observed, that using product-oriented departments to manufacture
standardized products in machine companies lead to reduced transportation. This can be considered the
start of Group Technology (GT). Parts are classified and parts with similar features are manufactured
together with standardized processes. As a consequence, small "focused factories” are being created as
independent operating units within large facilities.

More generally, Group Technology can be considered a theory of management based on the principle
that "similar things should be done similarly". In our context, "things" include product design, process
planning, fabrication, assembly, and production control. However, in a more general sense GT may be
applied to all activities, including administrative functions.

The principle of group technology is to divide the manufacturing facility into small groups or cells of
machines. The term cellular manufacturing is often used in this regard. Each of these cells is
dedicated to a specified family or set of part types. Typically, a cell is a small group of machines (as a
rule of thumb not more than five). An example would be a machining center with inspection and
monitoring devices, tool and Part Storage, a robot for part handling, and the associated control
hardware.

The idea of GT can also be used to build larger groups, such as for instance, a department, possibly
composed of several automated cells or several manned machines of various types. As mentioned in
Chapter 1 (see also Figure 1.5) pure item flow lines are possible, if volumes are very large. If volumes
are very small, and parts are very different, a functional layout (job shop) is usually appropriate. In the
intermediate case of medium-variety, medium-volume environments, group configuration is most
appropriate.

GT can produce considerable improvements where it is appropriate and the basic idea can be utilized in
all manufacturing environments:

e To the manufacturing engineer GT can be viewed as a role model to obtain the advantages of
flow line systems in environments previously ruled by job shop layouts. The idea is to form
groups and to aim at a product-type layout within each group (for a family of parts). Whenever
possible, new parts are designed to be compatible with the processes and tooling of an existing
part family. This way, production experience is quickly obtained, and standard process plans
and tooling can be developed for this restricted part set.

e To the design engineer the idea of GT can mean to standardize products and process plans. If a
new part should be designed, first retrieve the design for a similar, existing part. Maybe, the
need for the new part is eliminated if an existing part will suffice. If a new part is actually
needed, the new plan can be developed quickly by relying on decisions and documentation
previously made for similar parts. Hence, the resulting plan will match current manufacturing
procedures and document preparation time is reduced. The design engineer is freed to
concentrate on optimal design.

! This chapter is based on Chapter 6 of Askin & Standridge (1993). It is recommended to read this chapter parallel to the
course notes.

In this GT context a typical approach would be the use of composite Part families. Consider e.g. the
parts family shown in Figure 3.1.

Operations Example parts
2 3 4 The parameter values for the features of this
single part family have the same allowable

| L |
‘FK T~ ranges. Each part in the family requires the
— J same set of machines and tools; in our
L example: turning/lathing (Drehbank), internal
drilling (Bohrmaschine), face milling
(Planfrasen), etc.

i— ________________
Raw material should be reasonably consistent
_—f:‘t}__\} (e.g. plastic and metallic parts require different
E—— manufacturing operations and should not be in
—1— the same family).
T~ Fixtures can be designed that are capable of
S Epe—— supporting all the actual realizations of the
L composite parts within the family.
— Standard machine setups are often possible

with little or no changeover required between
the different parts within the family (same
— material, same fixture method, similar size,
Figure 3.1. Composite Group Technology Part same tools/machines required).

(Askin & Standridge, 1993, p. 165).

In the functional process (job shop) layout, all parts travel through the entire shop. Scheduling and
material control are complicated. Job priorities are difficult to set, and large WIP inventories are used
to assure reasonable capacity utilisation. In GT, each part type flows only through its specific group
area. The reduced setup time allows faster adjustment to changing conditions.

Often, workers are cross-trained on all machines within the group and follow the job from Start to
finish. This usually leads to higher job satisfaction/motivation and higher efficiency.

For smaller-volume part families it may be necessary to include several such part families in a machine
group to justify machine utilization.

One can identify three different types group layout:

Part family

In a GT flow line concept all parts
. = [L] assigned to a group follow the same
e L =5 wniing machine sequence and require relatively
ffu"r’::g propo_rtional time requirements on each

G- arinsing Machine.
2—%M [L 7P The GT flow line operates as a mixed-
L product assembly line system; see Figure
3.2a. Automated transfer mechanisms

may be possible. See also Chapter 4 for

Figure 3.2a. GT flow line mixed-product assembly lines.
(Askin & Standridge, 1993, p. 167).

Part family 2 Part family 1

I N | ' The classical GT cell allows parts to move from
| RS | i) . . .
A N T any machine to any other machine. Flow is not
‘: ' unidirectional. However, since machines are
' located in close proximity short and fast transfer
is possible.

Figure 3.2b. GT cell
(Askin & Standridge, 1993, p. 167).

Part family 1 Part family 2 The GT center may be appropriate when

e large machines have already been located
I I"[] and cannot be moved, or
e product mix and part families are dynamic

B and would require frequent relayout.

| ' o Then, machines may be located as in a process
i I [: & B layout by using functional departments (job

shops), but each machine is dedicated to
producing only certain Part families. This way,
only the tooling and control advantages of GT

Figure 3.2c. GT center can be achieved. Compared to a GT cell layout,
(Askin & Standridge, 1993, p. 167). increased material handling is necessary.

GT offers numerous benefits w.r.t. throughput time, WIP inventory, materials handling, job
satisfaction, fixtures, setup time, space needs, quality, finished goods, and labor cost; read also
Chapter 6.1 of Askin & Standridge, 1993.

In general, GT simplifies and standardizes. The approach to simplify, standardize, and internalize
through repetition produces efficiency.

Since a workcenter will work only on a family of similar parts generic fixtures can be developed and
used. Tooling can be stored locally since parts will always be processed through the same machines.
Tool changes may be required due to tool wear only, not part changeovers (e.g. a press may have a
generic fixture that can hold all the parts in a family without any change or simply by changing a part-
specific insert secured by a single screw. Hence setup time is reduced, and tooling cost is reduced.
Using queuing theory (M/M/1 model) it is possible to show that if setup time is reduced, also the
throughput time for the system is reduced by the same percentage.

3.2 How to form groups

Askin & Standridge, 1993, Chapter 6.2 provides a list of seven characteristics of successful groups:

Characteristic Description

Team specified team of dedicated workers

Products specified set of products and no others

Facilities specified set of (mainly) dedicated machines equipment

Group layout dedicated contiguous space for specified facilities

Target common group goal, established at start of each period

Independence buffers between groups; groups can reach goals independently

Size Preferably 6-15 workers (small enough to act as a team with a
common goal; large enough to contain all necessary resources)

Clearly, also the organization should be structured around groups. Each group performs functions that
in many cases were previously attributed to different functional departments. For instance, in most
situations employee bonuses should be based on group performance.

Worker empowerment is an important aspect of manned cells. Exchanging ideas and work load is
necessary. Many groups are allocated the responsibility for individual work assignments. By cross-
training of technical skills, at least two workers can perform each task and all workers can perform
multiple tasks. Hence the there is some flexibility in work assignments.

The group should be an independent profit center in some sense. It should also retain the responsibility
for its performance and authority to affect that performance. The group is a single entity and must act
together to resolve problems.

There are three basic steps in group technology planning:

1. coding
2. classification
3. layout.

These will be discussed in separate subsections.

3.3 Coding schemes

The knowledge concerning the similarities between parts must be coded somehow. This will facilitate
determination and retrieval of similar parts. Often this involves the assignment of a symbolic or
numerical description to parts (part number) based on their design and manufacturing characteristics.
However, it may also simply mean listing the machines used by each part.

There are four major issues in the construction of a coding system:

part (component) population
code detail

code structure, and

(digital) representation.

Numerous codes exist, including Brisch-Birn, MULTICLASS, and KK-3. One of the most widely used
coding systems is OPITZ. Many firms customize existing coding systems to their specific needs.
Important aspects are

e The code should be sufficiently flexible to handle future as well as current parts.

e The scope of part types to be included must be known (e.g. are the parts rotational, prismatic,
sheet metal, etc.?)

e To be useful, the code must discriminate between parts with different values for key attributes
(material, tolerances, required machines, etc.)

Code detail is crucial to the success of the coding project. Ideal is a short code that uniquely identifies
each part and fully describes the part from design and manufacturing viewpoints,

e Too much detail results in cumbersome codes and the waste of resources in data collection.
e With too few details and the code becomes useless.

As a general rule, all information necessary for grouping the part for manufacturing should be included
in the code whenever possible. Features like outside shape, end shape, internal shape, holes, and
dimensions are typically included in the coding scheme.

W.r.t. code structure, codes are generally classified as, hierarchical (also called monocode), chain (also
called polycode), or hybrid. This is explained in Figure 3.3 (taken from Askin & Standridge, 1993).

Hierarchical code structure: the meaning of a
digit in the code depends on the values of
preceding digits. The value of 3 in the third
place may indicate

Mon-rotational

Rutational

e the existence of internal threads in a
rotational part: "1232"

Smoath
external
shapa

e asmooth internal feature: "2132"

Surface
mach.

Hierarchical codes are efficient; they only
consider relevant information at each digit. But
Figure 3.3a. Hierarchical structure. they are difficult to learn because of the large
number of conditional inferences.

Code Digit 1 2 3 4
Fostre | Ouisieshape | Ireideshope | Moles SwfaceMachiie) *:* Chain code: each value for each digit of the
- "-a-l-‘-'-"----— None Rone No None code has a consistent meaning. The value 3 in
; P— P I — the third place has the same meaning for all

3 Stepped ends Stepned ands 3;';”‘:"' External spline parts.
4 |Stepped and threacs| Stepped and treads| %19 | ntemal curved They are easier to learn but less efficient.
" Certain digits may be almost meaningless for

some parts.

Figure 3.3b. Chain structure.

R advantages,

Code digit
4

Figure 3.3c. Chain structure. code is OPITZ.

The final decision is, code representation. The digits can be

Since both hierarchical and chain codes have
many commercial
hybrid: combination of both:

codes are

Some section of the code is a chain code and
then several hierarchical digits further detail
the specified characteristics. Several such
sections may exist. One example of a hybrid

e numeric or even binary; for direct use in computer (storage and retrieval efficiency)

e alphabetic; humans are more comfortable with a coding like "S™ for smooth or "T" for thread

(Gewinde) than with digits

The proper decision process involves the design engineer, manufacturing engineer, and Computer

scientist working together as a team.
A well known coding system is OPITZ. It can have 3 sections:

e it starts with a five-digit "geometric form code"
followed by a fourdigit "supplementary code."

e This may be followed by a company-specific four-digit "secondary code" intended for

describing production operations and sequencing.

Geometrical Form Code

Digit 3 Digit 4 Digit &
Rotational Plane Auxiliary holes
Digit 1 Digit 2 surface surface gear teeth
Component class fain shape machining machining forming
0 LUDS05 |k
1 External — Internal t—y Flane L__1Aux. holes,
1 05<UD<3 = ghape [shape [surface — and
— _ - ~==1 machining [gear teeth
2|8 =3
RE With Rotational
31& | WP = 2 goviation ™~ Overall | machining, | — R S e
With |~ Shape internal and [~ inine |1 formi
4] 1D >2 yoviation external machining orming
"N - sha
5 Special elemepﬁts
6 AB<3 Oversll
15 ANC24 Gshapt:l \ Prinicipal F— Plane |___jAux. holes,
712 AB>3 reer s,";‘;'ae — bores [—] surface — testh
L= p " machining [~ forming
S wez3 | overal]
Blgl ac<a shape
18 -
° Special 1 Dimensions
|2 Material
e
& 13} Raw material form
4 Accuracy

Special Supplementary Code

Figure 3.4. Overview of the Opitz code (Askin & Standridge, 1993, p. 167).

Digit 1: shows whether the
part is rotational and also
the basic dimension ratio
(length/diameter if
rotational, length/width if
nonrotational).

Digit 2: main external
shape; partly dependent on
digit 1.
Digit 3: main
shape.

internal

Digit 4. machining require-
ments for plane surfaces.

Digit 5: auxiliary features
like additional holes, etc.

For more details on the
meaning of these digits see
Figure 6.6 in Askin &
Standridge, 1993.

UNC thread

Code 3L/023.0

5 Stepped with thread (external)
4 Stepped by smooth (internal)

0 No surface machining
0 No auxiliary holes

Figure 3.4. Opitz code

for sample part (Askin &
Standridge, 1993, p. 167).

An example for a coded

1.260

Part is shown in Figure
3.5.

Correctcode: 22400

Part coding is helpful for design and group formation. But, the time and cost involved in collecting
data, determining part families, and rearranging facilities can be seen as the major disadvantage of GT.
For designing new facilities and product lines, this is not so problematic: Parts must be identified and
designed, and facilities must be constructed anyway. The extra effort to plan under a GT framework is
marginal, and the framework facilitates standardization and operation thereafter. Hence, GT is a logical
approach to product and facility planning.

3.4 Classification (group formation)

Here, part codes and other information are used to assign parts to families. Part families are assigned to
groups along with the machines required to produce the parts. A variety of models for forming part-
machine groups are available in the literature, as can be seen from the following figure:

Group

Misual

MMethod

Similarity

MNlatrix

Production

Technology

Figure 2.1 Taxonomic review framework

Flow Aanal.

Formulation

] <raph Theory

Mlathcmatical

Cocllicicnts

Array-Rased

Mlethod

Integer

Programuming

Lincar

Formulation

Other

Programoming

[Dvnamic

Programuming

Systoms

Structurces

Mlonocode

Hicrarchical

Parts Coding

Aonalysis

Figure 3.5. Methods of group formation (xxxx).

Polycode

(Chain Typa)

v brid

(Mlixed)y

Simulations

Expert

Systems

MNeural

MNetworks

Fuwzry Sets

Theory

In addition to simple visual methods based on experience and the use of coding schemes, there is a
class of mathematical methods called Production Flow Analysis (PFA).

3.5 Production Flow Analysis (PFA)

To group machines, part routings must be known. Section this presents a method for clustering part
operations onto specific machines to provide this routing information.

The basic idea is:

¢ identify items that are made with the same processes / the same equipment
e These parts are assembled into a part family
e Can be grouped into a cell to minimize material handling requirements.

The clustering methods can be classified into:

e Part family grouping: Form part families and then group machines into cells

e Machine grouping: Form machine cells based upon similarities in part routing and then allocate
parts to cells

e Machine-part grouping: Form part families and machine cells simultaneously.
The most typical methods are the machine-part grouping ones. Typically one starts with a matrix that

shows which part types require which machine types. The aim is to sort the part types and
machines such that some kind of block diagonal structure is obtained:

Part
Machine 13 2 8 6 115 1 10 7 4 3[15 9 12 14
B 8 H E K
D g E B E
A E B § & &
H B E E E &
/ g B i
E £ E E &
c E 8 &
G E B g
F § i &

Figure 3.6. Matrix of machine usage (Askin and Standridge).

In case of the example in Figure 3.6, it is easy to build groups:

e Group 1: parts {13, 2, 8, 6, 11 }, machines {B, D}
e Group 2: parts { 5, 1, 10, 7, 4, 3}, machines {A, H, I, E}
e Group 3: parts { 15, 9, 12, 14}, machines {C, G, F}

But the question is how this sorting can be done. Various heuristic and exact methods have been
developed. The simplest one is binary ordering, also known asrank order clustering or King’s algorithm

3.5.1 Binary Ordering (Rank Order Clustering, King’s Algorithm)
This is is done in three steps
e Interpret rows and columns as binary numbers

e Sort rows w.r.t. decreasing binary numbers
e Sort columns w.r.t. decreasing binary numbers

This will be illustrated in a simple example (from Ginther and Tempelmeier, 1995) with 6 parts and 5
machines:

part
machine | 1 2 3 | 4 5 6
A - 1 - 1 - -
B 1 - 1 - 1 1
C - 1 1 1 - 1
D 1 - - - 1 1
E - - - 1 1 -
First, the rows are interpreted as binary numbers and sorted
part
machine | 1 2 3 4 5 6 value
A S I T O T R
B 1 - 1 - 1 1
C - 1 1 1 - 1
D 1 - - - 1 1
E - - - 1 1 -
2 32 | 16 | 8 4 2 1

This gives a new ordering of the machines: B — D — C — A — E. Next, we sort columns w.r.t. decreasing
binary numbers (note the new order of rows here):

part
machine 112]3]|4|5]|6 2
B 1 -[1[-[1]1| 1
D 1 --[-12]1 e
C “Trfalal-]1] 4
A T -T2-1-1 2
E T-1-T22] - 1
value

This gives a new ordering of parts: 6-5-1-3-4-2.

The matrix with rows and columns in the new order is:

part
machine 6511342
B 1 11-1 -
D 1 -1 - -
C 1]1-(-11]1]1
A -1-1-1-1111
E -11]-1-11) -

Now 2 groups can be formed

e Group 1: parts {6, 5, 1}, machines {B, D}
e Group 2: parts { 3, 4, 2}, machines {C, A, E}

Parts 1, 4, and 2 can be produced in one cell. The remaining items 6, 5, and 3 are outside the bold
rectangles (indicating the block diagonal structure) and cause problems. There are, in principle 3
possibilities:

1. these parts produced in both cells, i.e. part 6 is mainly produced in cell 1 but for operation
on machine C it has to be transported to cell 2

2. machines B, C, and E have to be duplicated, so that all parts can be produced within one cell
3. some parts that do not fit at all could also be given to subcontractors
Binary Ordering is a simple heuristic = no guarantee that ,,optimal* ordering is obtained.

Sometimes a better better block-diagonal structure is obtained by repeating the Binary Ordering until
there is no change anymore. In the above example this yields the final form of the matrix

part
machine | 6 | 5 | 1|3 | 4| 2 |value
B 1{1)212)1f-|-1 60
D 1(1({2}f-(-|-| 56
C 11 -1-1112]1] 39
E -1 -1-11] - 3
A -l-1-1-11f1] 18
value |28(26(24|20(7 | 5

Hence, repeated Binary Ordering did not help in this example.

3.5.2 Single-Pass Heuristic Considering Capacities (Askin and Standridge)

In the previous section we assumed that all machines have sufficient capacity to produce all products
that need to go on this machine, i.e. we ignored capacity. The following algorithm by Askin and
Standridge extends the model by introducing capacity considerations:

We make the following assumptions:

o All parts must be processed in one cell (machines must be duplicated, if off-diagonal elements
occur in the matrix)

¢ All machines have capacities (normalized to be 1)
e There are constraints on number of identical machines in a group
e There are constraints on total number of machines in a group

Example: We will demonstrate the methods in an example (from Gunther and Tempelmeier, 1995)
with 7 parts and 6 machines. At most 4 machines can be in a group and not mot than one copy of each
machine is allowed in each group. The following matrix contains the processing times (incl. set up
times) for typical lot size of parts on machines (i.e., the entries in matrix are not just 0/1 for used/not
used). All times are normalized as percentage of total machine capacity:

part
machine 1123|4567 sum [min. # machines
A 03| -1 -| - [06] - - 0.9 1
B - 103| - 103 - | - |01
C 04] - | -]05| - [03] -
D 02| - [04] - |03 - |05
E - 104) - - -105] -
F - 10203104 - | - |02

By summing up all entries in a row we obtain total machine utilization. If this value exceeds one, at
least two machines are needed. More generally, this number must be rounded up to the next integer to
give the minimum number of machines needed. It should be noted, that this minimum number of
machines is a lower bound. It may be necessary to use more copies of some machines than this
minimum number suggests.

Summing up the minimum number of machines for all machine types we obtain, that at least 9
machines are needed. Since not more than 4 machines are permitted in a group, we know that at least
9/4 = 2,25 groups are needed. Since only integer numbers of groups make sense, this must be rounded
up to obtain the lower bound on the number of groups: at least 3 groups.

The Single-Pass Heuristic by Askin and Standridge consists of the two steps
1. obtain (nearly) block diagonal structure (e.g. using Binary Ordering)
2. form cells/groups one after another:
e Assign parts to groups (in sorting order)
e Also include necessary machines in group
e Add parts to group until either
o the capacity of some machine would be exceeded, or
0 the maximum number of machines would be exceeded

Example continued:

For binary sorting treat all entries as 1s. The result is the matrix

part
machine 1 (5713|4612
D 02(0.3|05|04(- | - | -
C 04| -1-1-105|03] -
A 03|06 - | -|-1|-] -
F - | -102]03(04] - |02
B - -101] - (03] -]03
E -(-1-1-1|-1]05/04
Hence, the parts are considered in the following order: D-C-A-F-B - E.
Iteration part group assigned machines remaining capacity
chosen
1 1
2 5
3 7
4 3
5 4
6 6
7 2

The final solution consists of the three cells:

e Group 1: parts {1, 5}, machines {D, C, A}
e Group 2: parts {7, 3, 4}, machines {D, F, B, C}
e Group 3: parts {6, 2}, machines {C, E, F, B}

We can compare the machines used with the theoretical minimum numbers computed earlier:

part
machine | 1 | 2 31415 6 7 | sum [min. #| Single-Pass Heuristic
A 03] - - - [06] - - 0.9 1 1
B - 103 - [03] - - [01] 07 1 2
C 04| - - |05f - 103 - 1.2 2 3
D 02| - [04] -]03] - |05] 14 2 2
E - 104 - - - 105 - 0.9 1 1
F - 102]103(04]| - - 102] 11 2 2

Apparently, we need one more copy of machine B (2 instead of 1) and one more copy of machine C (3
instead of 2).

We should note, that the Single-pass heuristic of Askin und Standridge is a simple heuristic. Hence, it
gives not necessarily an optimal solution (min possible number of machines).

3.5.3 LP-Model for the model by Askin and Standridge

The assignment of machines and parts to groups can easily be formulated as a binary integer program
BIP. Let us consider exactly the same problem as in the previous subsection and let the objective be the
(weighted) number of machines used.

We will use the following notation:

iel cells, groups

jeld parts

keK machine types

aj capacity of machine type k needed for part j
M max number of Maschinen per group

Furthermore, per group only one copy of each machine type is permitted. The decision variables are:

X; =1, if part j is assigend to group i (and = 0, otherwise)

Y. =1, if machine type k is assigend to group i (and = 0, otherwise)

The objective is the toral number of machines used:

D> >y > mint

iel keK

subject to the constraints:

inj =1 jeld (each part j in exactly one group)

iel

Zajk X < Vi iel,keK (capacity of machine k in group i)

jed

Z Vi <M el (not more than M machines in group i)
kek

x; € {0.1} iel,jeJ (binary variables)

Y, €104} iel,keK (binary variables)

The opti al solution can be computed using some standard LP solvers. In the simple example above,
this can be dobe using the EXCEL solver — see XLS file on the course homepage. The optimal solution
IS:

group parts machines Remaining capacity
1 2,4,6 B,C,EF B (0.4), C (0.2), E (0.1), F (0.4)
2 1,5 A C,D A (0.1), C (0.6), D (0.5)
3 3,7 B,D,F B (0.9), D (0.1), F (0.5)

Hence, the simple single-pass heuristic did not find the optimal solution:

part
machine| 1 | 2 | 3 |4 |5 | 6| 7 |sum|min. #| Single-Pass Heur. | opt
A 03[- -1]-106]-[-1]09 1 1 1
B - 10.3] - |03 -] -(01]07 1 2 2
C 04] - | - 105] -103] - |12 2 3 2
D 02| - 104] - (03] -1]05]14] 2 2 2
E - 104] - | -1]-105[-109 1 1 1
F - 10.2]103]04| -] -(02]11 2 2 2
Sum 9 11 10

3.5.4. Clustering using Similarity Coefficients

Another method of clustering is based on similarity coefficients. The idea is to identify machines which
are used more or less for the same parts and to put these in a group. We define:

n; Number of parts visiting machine i
Nij ... Number of parts visiting machines i and j
Then the similarity coefficient between machines i and j is defined as:

s —max] Dil_ M
! n'n, [minj,n,|
Example: (from Askin and Standridge) 6 machines and 8 parts. All these calculations can easily be
performed using EXCEL; — see the course homepage.

parts ni
machine 1 2 3 4 5 6 7 8
A 1 1 1 3
B 1 1 1 3
C 1 1 1 1 4
D 1 1 1 1 4
E 1 1 2
F 1 1 2
The values n;; can be computed:
Nij parts
machine 1 2 3 4 5 6 7 8
A
B
C
D
E
F

This gives the similarity coefficients:

Sij parts

machine A B C D E F
A 1 1 0,33 0 0 0
B 1 1 0,33 0 0 0
C 0,3 0,3 1 0,75 0 0
D 0 0 0,75 1 0,5 0,5
E 0 0 0 0,5 1 1
F 0 0 0 0,5 1 1

These have a similar function as the savings values known from transportation logistics. The following
hierarchical clustering heuristic is very similar to the savings algorithm known from VRP.

Before proceeding, one can eliminate all entries with s;; < T, where T is some parameter between 0 and
1. By omitting the “weak” links the structure becomes clearer. Here, we choose T = 1 and we do not
eliminate any links at the moment.

Hierarchical clustering heuristic:

1. Form N initial clusters (one for each machine). Compute similarity coefficients s;; for all
machine pairs.

2. Merge clusters: Let i and j range over all clusters. Choose the pair if clusters (i*, j*) that has the
highest similarity coefficient s;;. Merge clusters i* and j* if possible.

If more than one cluster remains, go to 3. otherwise stop.

3. Update coefficients: Remove rows and columns i*, j* from the similarity coefficient matrix.
Replace them with a new row k and a new column k. For all remaining clusters r, the updated
similarity coefficients of this new cluster k are computed as:

Srk = Max {Sri*, Srj*}

In step 3, when clusters i* and j* are joined to become the new cluster k the new similarity coefficient
to some other cluster k is computed as the maximum of the corresponding similarity coefficient of
clusters i* and j*. This is one possible setting.

» Other updating rules are possible, such as e.g. the average of the corresponding similarity
coefficients.

In the first iteration, groups i* = A and j* = B are joined to become new group k = AB. The updated
similarity coefficients are

Sij parts
machine AB C D E F
AB 1 0,33 0 0 0
C 0,33 1 0,75 0 0
D 0 0,75 1 0,5 0,5
E 0 0 0,5 1 1
F 0 0 0,5 1 1

In the next iteration, clusters i* = E and j* = F are joined to become new group k = EF. The updated
similarity coefficients are:

Sij parts
machine AB C D EF
AB 1 0,33 0 0
C 0,33 1 0,75 0
D 0 0,75 1 0,5
EF 0 0 0,5 1

Next, clusters i* = C and j* = D are joined to become new group k = CD. The updated similarity

coefficients are:

Sij parts
machine AB CD EF
AB 1 0,33 0
CD 0,33 1 0,5
EF 0 0,5 1

If groups should be joined further (because the constraints permit this), clusters i* = CD and j* = EF
are joined to become new group k = CDEF.

Machine

The following figure shows at which thresholds

(d t T t d b) h h A B < D E F 6 groups
corresponding to T mentioned above) whic
groups can be formed. o L N
For T = 1 only the groups AB and EF can be
formed, while machines C an d form their own 75 |- 3 groups
single machine roups.
For T = below 0.33 all machines are joined in one %; 50 |- 2 groups
group. =

33 |~ i group

Figure 3.7. Dendogram for a hierarchical
clustering (Askin and Standridge).
4]

3.5.5. Group Formation using Graph Partitioning

When machines have common parts, i.e., njj > 0 in the notation of Section 3.5.4, then ideally they
should be in the same group. Otherwise, duplication of machines or transportation between groups is
necessary. This could be graphically represented as a graph with the nodes being the machines, where
edges between machines mean common parts:

@ 1,23

Figure 3.8. Graph representation of the
example (Askin and Standridge); numbers at

the edges are the common parts. s

Then group formation can be seen as a special case of graph partitioning. This can be formulated as
follows:

Given a graph with nodes and edges, find a partitioning of the node set into a (given) number of
disjoint subsets of approximately equal size, such that the total cost of edges that connect nodes
of different subsets is minimized.

Graph partitioning is an np-hard combinatorial optimization problem. Various exact and heuristic
methods have been developed over the past decades. We describe a simple and well known heuristic by
Kernighan and Lin (1970) for clustering in two subsets.

3.5.5.1 Graph partitioning heuristic by Kernighan and Lin (KL)
Input: A weighted graph G = (V, E) with
e VertexsetV. ([V|=2n)

e Edge SetE. ([E|=¢)
e Cost cap for each edge (A, B) in E.

Output: 2 subsets X & Y such that

e V=XuY and XnY={} (ie. partition)
e Each subset (group) has n vertices
e Total cost of edges “crossing” the partition is minimized.

Complete enumeration (brute force) is not possible (np-hard):

e Try all possible bisections. Choose the best one.
e If there are 2n vertices = number of possibilities = (2n)! / (n!)2 = n
e For 4 vertices (A,B,C,D), 3 possibilities
1. X={A,B} & Y={C,D}
2. X={A,C} & Y={B, D}
3. X={A, D} & Y={B,C}
e For 100 vertices = 5 x 10?® possibilities

KL-Algorithm:

The KL-Algorithm is an improvement algorithm, that starts with any initial partition X and Y (e.qg.
obtained using any constructive algorithm)

Oo(n)

e A pass means exchanging each vertex A € X with each vertex B € Y exactly once:

1.Fori:=1tondo
From all unlocked (unexchanged) vertices,
choose a pair (A, B) such that the gain(A, B) is largest.
Exchange A and B. Lock A and B.
Let gi = gain(A, B). (can also be negative)
2. Find the k s.t. G = g1+ ... + gk is maximized.
3. Switch the first k pairs.

e Repeat the pass until there is no more improvement (G = 0).

The complexity of this algorithm (in a naive implementation) is as follows. For each pass, O(n?) time is
needed to find the best pair to exchange; n pairs are exchanged = the total time is O(n3) per pass. But
there are better implementation that need O(n?lg n) time per pass. And the number of passes is usually
small.

Example for KL-Algorithm:

Initial weighted graph G with 6 vertices (nodes),
V(G)={ab,c,de f}

Start with any partition of V(G) into X and Y, e.g.,

X={ace}
Y={b,d f}

The cut value is the sum of all edge costs between the 2 sets:

cut-size = 3+1+2+4+6 = 16

Try to improve this partitioning (i.e. reduce cut-size) using
KL.

For each node x € { ai, b, ¢, d, e, f }.compute the gain values of moving node x to the others set:

Gy = Ex - Ix
where
Ex = cost of edges connecting node x with the other group (extra)
I, = cost of edges connecting node x within its own group (intra)
This gives:

Ga=Ea—-1,=3-4-2=-3
Ge=E.—-1c=1+2+4-4-3=0
Ge=Ec—-1c=6-2-3=+1
Gp=Ep,-1,=3+1-2=+2
Gd:Ed—|d:2—2—1:—l
Gi=Ei-lf =4+6-1=+9

Cost saving when exchanging a and b is essentially G, + Gy,

However, the cost saving 3 of the direct edge (a, b) was counted twice. But this edge still connects the
two different groups = must be added twice. Hence, the real “gain” (cost saving) of this exchange is

Jab = Ga + Gp - 2Cap
Must compute this for all possible combinations (pairs):

gab=Ga+Gb—2Wab:—3+2—2-3:—7
0ad = Ga+ Gg—2Wag=-3-1-20=-4
Oaf = Ga + G —2War =—3+9-2.0=+6
gcb=Gc+Gb—2ch=0+2—2-1 0
0d=Gc+Gyg—2Weg=0-1-2-2 -5
O0cf=Gc+Gi—2wy =0+9-24 =+1
Oeb = Ge + Gp—2Wep =+1 +2-2.0=+1
ged:Ge+Gd—2wed:+1—1—2~O: 0
Oef = Ge+Gi—2Wg =+1+9-26=-2
The maximum gain is obtained by exchanging nodes a and f = new cut-size = 16 — 6 = 10.

Perform this exchange

Verify: new cut-size = 1+1+2+4+2=10
Lock all exchanged nodes (a and f)

New sets of unlocked nodes:

X ={c,e}
Y'={b,d}

Update the G-values of unlocked nodes
G,cz Gc+ZCca_2Ccf=0+ 2(4—4) =0
G,ez Ge+20ea_2Cef= 1+ 2(2—6) =—7
G’y =Gp + 2Chf— 2Cpa=2 + 2(0 - 3) =-4
Gy=Gg+ 2C4—2Cga =—1 + 2(1—0) =1

Compute the gains:
Ocb = Ge+ Gp— 2w, =

Ocd = Ge + Gy — 2W¢qg =

Qeb = Ge + Gp — 2Wep =

Oed = Ge + Gy — 2Weq =
Pair with maximum gain (can also be neative) is (c, d).
: Perform this exchange between c and d.
new cut-size = =10-(-3) =13
Lock all exchanged nodes (c and d)
New sets of unlocked nodes:

X ={e}

Y'={b}
Update the G-values of unlocked nodes

G’e = Ge + 2Ced - 2Cec =
G’p = Gp + 2Cpg — 2Cpc=

Compute the gains:
geb:Ge+Gb_2Ceb :_1_2_2'0 :—3

Summary of the Gains...

o g1:+6
* 01+ ge=+6-3=+3
<> gl+g2+g3=+6—3—3=0

Maximum gain is g1 = +6 = Exchange only nodes a and f. End of 1 pass.
This pass must be repeated until no changes are observed any more.

3.5.5.1 Application of graph partitioning (KL) to group formation
We do this in the above example:

parts
machine| 1 2 3 4 5 6 7 8 123
A 1 1 1
B 1 1 1
C 1 1 1 1
D 1 1 1 1
E 1 1 7
F 1 1

Assume that from capacity considerations (min number of machines) it is clear that at least 2 copies of
machines A, B, and C are necessary. Hence we duplicate machines A, B, and C:

parts
machine| 1 2 3 4 5 6 7 8

Al
B1 1 1
A2 1
B2
C1 1
C2 1 1 1

D 1 1 1 1

E 1 1
F 1 1

[
o

o

Dummy

Group 1 Group 2 Group 3

Let us assume that we need 3 clusters with at least 2 and at most 4 machines each. We start with an
initial clustering with 3 machines each. For this, we simply use the rows of the above matrix
(apparently this is not the best clustering, but we want to demonstrate the improvement step).

Note that we have also added dummy machines /with zero cost connections) to represent empty spaces
that could be occupied by real machines (note that up to 4 machines are permitted).

We start with optimizing the partition Group 1 = {Al, A2, B1, Dummy1} and Group 2 = {B2, C1, C2,
Dummy2} while we keep Group 3 = {D, E, F, Dummy3} unchanged for the moment.

Next, we apply the KL heuristic to Group 1 and Group 2:
For all nodes in these groups, we compute Ey, Iy, and Gy.

Group Node i E; l; Gi
1 Al 0 2 -2
Bl 0 2 -2
A2 1 0 1
Dummy1 0 0 0
2 B2 1 1 0
Cl 0 1 -1
C2 0 0 0
Dummy?2 0 0 0
Next we compute the Gj
Node i NOdEj Gii Gii' Gii"
Al B2 -2 -4
Cl -3 -3
C2 -2 -2
Dummy?2 -2
Bl B2 -2 -4
Cl -3 -3
C2 -2 -2
Dummy?2 -2
A2 B2 -1
Cl 0
C2 1
Dummy?2 1«
Dummy1 B2 0 -2
Cl -1 -1
C2 0 0 «
Dummy?2 0

We could choose the pairs (A2, C2), (A2, Dummy2), or (Dummy1, C1). We arbitrarily choose (A2,
Dummy?2) and fix these two machines (nodes). Then we update G;:

Gi = Gi + 2Ciaz — 2Cipummy2 in Group 1 and G™" = G; + 2Cipummy2 — 2Cjaz in Group 2.

Group Node i Gi Gi
1 Al -2+0-0 = -2
Bl -2+0-0 = -2
Dummy?2
Dummy1 0
2 B2 0+0-2 =-2
Cl -1+0-0 =-1
C2 0+0-0=0
A2

Then we update G;; We can do this in the above table in a new column. No improvements possible, but
the switch (Dummy1, C2) is the best one (no change in cost). This change is performed and the
machines Dummy1, C2 are fixed. New group 1 = {A1, B1, Bummy2, €2} and group 2 = {B2, C1,
DPummyd, A2} where fixed values are cancelled. Next step with G; and G.J :

We see that only the first step brought an improvement and get the new partition:
group 1 = {Al, B1, Dummy2, Dummy1}, and group 2 = {B2, C1, C2, A2}.

We could repeat this pass of the KL heuristic, but since the cut-value of this partition is zero, we know
that this is already the optimal partition of these 8 machines (including 2 dummies).

(——) | (—

O O

Dummy Dummy

Group 2

Dummy

|
|
I
|
!
|
|
|
|
i
|
|
|

Group 1 Group 3

In a similar way, the KL heuristic can be applied to groups 2 and 3 to exchange C2 and Dummya3. Then
the optimal partition with cut-value zero is obtained in this example.

In general, this procedure is a heuristic and it is not guaranteed that an optimal partition is found.

3.5.6 Group analysis without binary ordering: “key" machine

In the previous section we have briefly discussed graph theoretic methods based on KL. This was an
improvement heuristic (to improve a given partition), or it could also be used as a constructive method.
Using the idea of recursive bisection, first two groups (af approvimately equal size) are formed. Each
of these is then split into two subgroups and so on. After k such steps one has 2“groups.

Askin and Standridge (1993, § 6.4.1) also present another simple algorithm, that does not need binary
ordering and where the opposite approach is used, i.e., where “atomic” subgroups are formed that can
subsequently be combined to larger groups:

1. The machine with the fewest part types is called the ""key'* machine. A subgroup is formed
from all the parts that visit this key machine along with all machines required by these part
types.

2. Check if (except for the key machine) the machines in the subgroup fall into two or more
disjoint sets with respect to the parts they service. If disjoint subsets of the subgroup exist, the
subgroup is again subdivided into multiple subgroups.

If any machine is included in the subgroup due to just one part type, then this machine is termed
exceptional and removed.
Steps 1 and 2 are repeated until all parts and machines are assigned to subgroups.

3. The final step involves combining subgroups into groups of the desired size. Subgroups with
the greatest number of common machine types are combined.

Example: parts
machine| 1 2 3 4 5 6 7 8

(no duplication of machines) A 1 1 1

B 1 1 1

C 1 1 1 1

D 1 1 1 1

E 1 1

F 1 1

The data has been ordered using binary ordering so that similarities are more easily seen. However, this
is not necessary in this method.

Solution:
Iteration 1:

Step 1. Identify a key machine.
Machines E and F receive the fewest components = Arbitrarily choose E as key machine.
Parts 7 and 8, visit E. These parts require machines D, E, and F, thus forming a subgroup.

Step 2. Check for subgroup division:
Ignoring machine E, all parts visit machine F = subgroup cannot be further subdivided.
Machine D is used only for part 7 = D is exceptional for this subgroup and is removed.

Iteration 2:

Stepl . Identify new key machine. Six parts remain.
All machines receive at least three parts = Arbitrarily choose A.
Parts 1, 2, and 3 form the subgroup along with machines A, B, and C.

Step2 . Subgroup division:
Removing machine A does not create disjoint subgroups for parts 1,2, and 3.
Machine C is used for part 3 only = exceptional = remove.

Iteration 3:

Stepl . Identify a new key machine. Only parts 4, 5, and 6 remain.
C is the key machine. The subgroup becomes parts 4, 5, and 6 along with machines C and D.

Step2 . No further subdivision is possible. No exceptional machine.

Result of Steps 1 and 2: parts

machine| 1 2 3 4 5 6 7 8
A 1 1 1
B 1 1 1
C 1 1 1 1
D 1 1 1 1
E 1 1
F 1 1

Step3 . Aggregation: The decision maker can now attempt to recombine the three subgroups into a set
of workable groups of desired size.

3.6 Metaheuristics

We have briefly discussed some of the classical constructive heuristics and improvement heuristics
from the literature.

Since we are dealing with a tactical problem (that is not solved every day) where long computation
times are acceptable, it makes sense to invest more time. This can be done by applying metaheuristics,
exact methods (up to a certain problem size) and combined methods (matheuristics).

There is a large literature on applying metaheuristics and grouping or clustering problems (mainly
genetic algorithms or tabu search). Nevertheless, various possibilities exist to come up with new
metaheuristic approaches.

Examples:

e Since the similarity coefficients are rather similar to the savings values of transportation
logistics (VRP), the idea of a savings based ant system for VRP could be transferred to
grouping problems.

e The KL algorithm could be considered a local search (maybe in a simplified faster version), and
could be combined with some larger shaking steps to a VNS. Other fast local searches
(exchange and move) could be considered.

e A matheuristic could easily be constructed by applying e.g. the principle of destroy and
reconstruct: for a large problem, a subset of groups could be “destroyed” and all their machines
and parts could be freed. Then this smaller problem (considering only these parts and machines)
could be solved using some exact algorithm (e.g. applying CPLEX to a MIP formulation).

When designing metaheuristics or matheuristics for grouping problems, there are also 2 possibilities:
e Work directly on the model formulation (e.g. the above examples)

e Use a more aggregated representation and then apply some constructive algorithm to compute
the solution out of it. For example, the metaheuristic could just work on the ordering of parts
and machines (to give a better block diagonal structure than binary ordering) and then the single
pass heuristic by Askin and Standridge could be used to construct a solution.

It should also be noted that there ate various classes of grouping problems that differ w.r.t. objective
and constraints. This concerns e.g. duplication of machines and/or inter-group transport, etc.

References

Askin, R.G., Standridge, C.R.: Modeling & Analysis Of Manufacturing Systems, John Wiley & Sons,
1993.

B. Kernighan and S. Lin (1970): An Efficient Heuristic Procedure for Partitioning of Electrical
Circuits, Bell System Technical Journal, 291-307.

Internet sources on Opiz, KK3 und some methods, e.g.:
o http://www.ielm.ust.hk/dfaculty/ajay/courses/ieem513/GT/GT.html
Examples for metaheuristics:

e T.L.James, E.C. Brown, K.B. Keeling (2007): A hybrid grouping genetic algorithm for the cell
formation problem, Computers and Operations Research, Volume 34 (7, July) 2059-2079 .

e Mahdavi, M.M. Paydar, M. Solimanpur, A. Heidarzade (2009): Genetic algorithm approach for
solving a cell formation problem in cellular manufacturing, Expert Systems with Applications: An
International Journal, Volume 36 (3, April) 6598-6604.

e T. Tunnukij, C. Hicks (2009): An Enhanced Grouping Genetic Algorithm for solving the cell
formation problem, International Journal of Production Research, Volume 47 (7, Jan.) 1989 — 2007.

e D. Cao and M. Chen (2004): Using penalty function and Tabu search to solve cell formation
problems with fixed cell cost, Computers & Operations Research, Volume 31 (1, Jan.) 21-37.

e J. Schaller (2005): Tabu search procedures for the cell formation problem with intra-cell transfer
costs as a function of cell size, Computers and Industrial Engineering, Volume 49 (3, Nov.), 449 —
462.

